Using Bede
What is Bede?
Bede is the N8’s Tier 2 Power and GPU-based high-performance computing (HPC) platform.
Resources available
32x Main GPU nodes, each node (IBM AC922) has:
512GB DDR4 RAM
2x IBM POWER9 CPUs (and two NUMA nodes), with
4x NVIDIA V100 GPUs (2 per CPU)
Each CPU is connected to its two GPUs via high-bandwidth, low-latency NVLink interconnects (helps if you need to move lots of data to/from GPU memory)
4x Inferencing Nodes:
Equipped with T4 GPUs for inference tasks.
Other
2x Visualisation nodes
2x Login nodes
Filestores
The filestore layout is similar to that of the ARC system. In addition to the locations below, there is also a 20GB project folder that persists.
/home
- 4.9TB shared (Lustre) drive for all users./nobackup
- 2PB shared (Lustre) drive for all users./tmp
- Temporary local node SSD storage.
Logging in
ssh -l <username> bede.dur.ac.uk
Saving project name as env variable
Add the following line to your .bashrc
file.
export cemac='<your project name>'
Loading an interactive shell
srun -A $cemac --job-name=”prototyping" --gres=gpu:1 --time=00:20:00 --pty bash
Options and submission scripts info can be found here
Installing MiniConda with Power 9 support
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-ppc64le.sh;
bash Miniconda3-latest-Linux-ppc64le.sh
Creating a Test Conda Environment
module load cuda/10.2.89;
module load llvm/11.0.0;
mkdir /nobackup/projects/$cemac/$USER ;
cd $_;
conda create --prefix ./gpuenv python=3.7 --yes;
conda activate /nobackup/projects/$cemac/$USER/gpuenv;
conda install ipython;
Add conda channels (optional)
conda config --add default_channels https://repo.anaconda.com/pkgs/main
conda config --prepend channels https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda/
Installing common libraries with conda
You can check which linux-ppc64lpython packages are available by looking by visiting here .
Tensorflow
conda install -c conda-forge bazel
conda install tensorflow-gpu
conda install tensorflow-estimator --no-deps
AWS CLI
This also works for non-python packages such as the AWS command-line interface
conda install -c conda-forge awscli
GPFlow
conda install -c conda-forge bazel
conda install tensorflow-probability
conda install tensorflow-gpu
conda install tensorflow-estimator --no-deps
pip install gpflow — use-deprecated=legacy-resolver
Useful Links:
https://gpuhackshef.readthedocs.io/en/latest/bede/index.html
https://bede-documentation.readthedocs.io/_/downloads/en/latest/pdf/