# Using Bede ## What is Bede? Bede is the N8’s Tier 2 Power and GPU-based high-performance computing (HPC) platform. ## Resources available #### 32x Main GPU nodes, each node (IBM AC922) has: * 512GB DDR4 RAM * 2x IBM POWER9 CPUs (and two NUMA nodes), with * 4x NVIDIA V100 GPUs (2 per CPU) * Each CPU is connected to its two GPUs via high-bandwidth, low-latency NVLink interconnects (helps if you need to move lots of data to/from GPU memory) #### 4x Inferencing Nodes: * Equipped with T4 GPUs for inference tasks. #### Other * 2x Visualisation nodes * 2x Login nodes ## Filestores The filestore layout is similar to that of the ARC system. In addition to the locations below, there is also a 20GB project folder that persists. * `/home` - 4.9TB shared (Lustre) drive for all users. * `/nobackup` - 2PB shared (Lustre) drive for all users. * `/tmp` - Temporary local node SSD storage. ## Logging in `ssh -l bede.dur.ac.uk` ## Saving project name as env variable Add the following line to your `.bashrc` file.  `export cemac=''` ## Loading an interactive shell `srun -A $cemac --job-name=”prototyping" --gres=gpu:1 --time=00:20:00 --pty bash` Options and submission scripts info can be found here ## Installing MiniConda with Power 9 support ``` wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-ppc64le.sh; bash Miniconda3-latest-Linux-ppc64le.sh ``` ## Creating a Test Conda Environment ``` module load cuda/10.2.89; module load llvm/11.0.0; mkdir /nobackup/projects/$cemac/$USER ; cd $_; conda create --prefix ./gpuenv python=3.7 --yes; conda activate /nobackup/projects/$cemac/$USER/gpuenv; conda install ipython; ``` ### Add conda channels (optional) ``` conda config --add default_channels https://repo.anaconda.com/pkgs/main conda config --prepend channels https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda/ ``` ## Installing common libraries with conda You can check which linux-ppc64lpython packages are available by looking by visiting here . ### Tensorflow ``` conda install -c conda-forge bazel conda install tensorflow-gpu conda install tensorflow-estimator --no-deps ``` ### AWS CLI This also works for non-python packages such as the AWS command-line interface `conda install -c conda-forge awscli` ### GPFlow ``` conda install -c conda-forge bazel conda install tensorflow-probability conda install tensorflow-gpu conda install tensorflow-estimator --no-deps pip install gpflow — use-deprecated=legacy-resolver ``` ## Useful Links: * https://gpuhackshef.readthedocs.io/en/latest/bede/index.html * https://bede-documentation.readthedocs.io/_/downloads/en/latest/pdf/